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SUMMARY 

Heat transfer associated with forced convection between bundles of cylindrical fuel rods is analysed 
using the finite element method. A subchannel technique is employed and the numerical results are 
compared with previous experimental and numerical values. The solid and fluid zones are analysed, for 
temperature distribution, as a single domain. 

1. INTRODUCTION 

An optimal design of rod bundles with regard to performance and safety requires an accurate 
prediction of the thermal and flow characteristics of the inter-rod coolant. The present 
approach uses the finite element method to calculate the temperature and velocity distribu- 
tion in association with a subchannel analysis.' In such an analysis, the bundles are 
subdivided into several sub-channels, each bounded by a set of rod surfaces and imaginary 
lines connecting the rod centres (Figure 1). 

Numerical predictions using the finite difference method are fairly numerous. The more 
recent among these are those of Ramm and Johannsen? Meyder,' B~leev,'.~ Nisjing and 
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Figure 1. Rod bundle geometry 
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Eifler5 and Carajilescov and Todreas.6 The finite element method has been used by Slager7 
and Mikhailov* with measurable success. Slager used Meyder’s anisotropic mixing length 
approach and a four noded element and obtained results which agreed favourably with 
experiment and Meyder’s results. Mikhailov, again using four noded elements, used Buleev’s 
approach to solve for both the velocity and temperature distribution within a triangular rod 
bundle array. 

In the present analysis both one and two equation models are used and the results 
compared with both previously obtained numerical137 and experimental’ values. In particu- 
lar, in addition to velocity and temperature distributions a comparison of wall shear stress 
was also undertaken. 

2. GOVERNING EQUATIONS 

Although the flow is three dimensional, secondary flows at right angles to the rod axes have 
been found, both experimentally and numerically, to be negligible relative to the axial flow. 
The magnitudes of the secondary vortices are, in general, less than 5 per cent of the bulk 
velocity. Consequently, the present model is restricted to a frequently adopted quasi-three- 
dimensional approach in which the time averaged velocities, u,, u2, in the plane normal to 
the longitudinal axis of the rods are assumed to be zero. The flow is also considered to be 
fully developed, and buoyancy terms are ignored. Therefore, 

and 

in which xg is a Cartesian co-ordinate direction parallel to the rod axes, k is the turbulence 
kinetic energy and p the time averaged local pressure. 

The Navier-Stokes equations for turbulent flow involving the above assumptions and the 
eddy viscosity hypothesis are, 

Momentum 

Continuity 
au, au2 dug -+-+-=o 
ax, ax, 8x3 

Energy ._ - 
aT 1 a p p, aT 
axi paxi a a, 

ui - = - - [ (- + -) ifx,] (3)  

where p is the viscosity, p, the turbulent viscosity, T the time averaged temperature, u the 
Prandtl number and p the fluid density. In the energy equation, heat generation due to 
viscous dissipation has been ignored. 

Equation (3)  is used to analyse the flow in both the fluid and solid zones. Within a rod the 
relevant equation is, in the absence of terms associated with velocity, and assuming two 
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dimensional flow 

where the sufFix r denotes the rod, k is the thermal conductivity of the rod material and g is 
the energy source per unit volume. 

In the subchannel, the energy equation can now be written, 

Ensuring an overall energy balance between the rod and fluid leads to  the following 
relationship, 

(6) 
in which, 

G,=- 1 u,dxSdxz 
A, 

and A, and A, are the cross-sectional areas of the rod and coolant, respectively, and k' the 
effective thermal diffusivity of the fluid. 

Equations (4) and (6) now form the equations to be solved across the whole domain 
provided suitable boundary conditions and spatial distributions of both gig and kJk' are 
known. 

The turbulent viscosity can be evaluated from the Prandtl-Kolmogorov relationship 

pT = C,pk ' I2  1 (7) 

,in which C, is usually assumed to be constant. 
Another model for pT is that published by Buleev et aL4 in which, 

and 

to yield 

where 

and 
* - P G  au3 
Y 

P- an 
The length scale L1 is a function of position which, for the present geometry, is defined at 
point P (Figure 2) as 
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x 

Figure 2. Notation used in the definition of Buleev’s length scale 

The functions fo(q) and fi(q) are defined by, 

and 
65 

3 =* 
Y 

The turbulence kinetic energy, k, may be evaluated, 
turbulence, from 

in the one equation model of 

Generally CD is considered to be constant and the value of the length scale, I ,  is evaluated 
algebraically from Reference 6, 

1 r  r 
i i ’  r 

r 
r 0.38 r 

0 <; < 0.44 _ -  - - 

which were verified experimentally. Here i is the radial distance from the rod wall to the 
maximum velocity line and r measured radially from the wall. 

In the two equation model (12) is dispensed with and the length scale is obtained from a 
further equation, 

where 

3.  WALL FUNCTIONS 

In confined flow, the steep gradients of velocity, turbulent kinetic energy, dissipation rate of 
turbulence kinetic energy and temperature in the region close to a solid wall usually 
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necessitate the use of wall functions in order to avoid excessive finite element mesh 
refinement. The mesh is terminated some distance from the rod surface (hatched area in 
Figure S), and the near wall variation in the relevant variables are depicted via algebraic 
functions. The near wall nodes are placed within the fully turbulent zone which obviates the 
necessity for wall functions for laminar and transition zones. A set of wall functions that can 
be used are, 

1 I2 1 
K1 P 

u3 = -- (%) log, [Er,] 

in which K and E are constants, 7w is the local wall shear stress and r is measured radially 
from the rod surface. The remaining required definitions are 

r ,  = ( ~ ) ( ~ )  1 
where Tw is the temperature at the wall, T, is a constant and P(a/ut) is the Spalding- 
Jayatalika function. 

The wall shear stress, T,, is given by, 

3.1. Boundary conditions 

The remaining boundary conditions on surfaces AB, BC and CD are, 

0 
au3 a k  a& a~ -----=-= _ _ -  
an an an dn 

where n is the actual normal to the bounding surface. At the rod surface, 

u 3 = k = 0  

4. SOLUTION PROCEDURE 

The method of solving the momentum and continuity equations has been adequately 
reported elsewhere.lo3" The primitive variable approach is adopted and a suitable iteration 
scheme is adopted. The Galerkin weighted residual approach is used and an eight noded 
isoparametric finite element employed. An estimate of the near wall boundary values is 
required to  initiate the solution procedure. When the relevant equations have been solved 
for the current iteration, the wall shear stress can be estimated from (16). Updated estimates 
for u3, k and F can then be obtained and the procedure repeated until convergence is 
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achieved. All variables were underrelaxed with a relaxation factor of 0.5 and iterations 
continued until the maximum relative change in the variables was within 1 per cent. 

Once the velocity distribution is known then the average velocity, 

can be evaluated, where A is the hatched area in Figure 1. The Reynolds number could then 
be determined from 

ii 

EL 
R e = p - h  

where 
h = 4aib 

a is the cross-sectional area of the fluid and b is the wetted perimeter. 
Having determined the velocity distribution, equation (3)  can be solved, uncoupled from 

the flow equations, for the distribution of temperature. When the wall function is used then, 
again, the solution becomes, of necessity, iterative. The near wall temperature boundary is 
guessed in order to initiate the procedure, and equation (3)  solved for 7'. From this 
distribution the wall heat flux can be estimated from, 

Substituting into the assumed wall function (14) should then yield an improved near wall 
boundary condition on temperature. The procedure is repeated until convergence is ob- 
tained. The same relaxation factors and convergence criteria used for the velocity were again 
used for the temperature. 

A dimensionless Nusselt number, 

can be evaluated once the temperature distribution is known. Here To is defined as the bulk 
temperature of the fluid and L a characteristic length. 

4.1. Illustrafive example 

The aspect ratio pld, where p is the distance between the rod centres and d the rod 
diameter, chosen for the present example is 1-217. The finite element mesh used is shown in 
Figure 3, and consists of 120 elements and 407 node points. This was found to give results in 
agreement with very much finer meshes, and considered adequate for present purposes. The 
physical location of the near wall nodes was chosen so that, 

r+ >> 30.0 

to  ensure that these remained in the fully turbulent zone. This ensured that the use of only 
one wall function was sufficient. For ease of comparison with experimental' and numerical7*' 
results, a Reynolds number of 270,000 was chosen. 

Using equation (12) to evaluate the distribution of the Prandtl length scale, a comparison 
is made of the shear stress (Figure 4) between previously published data and the present 
results. 
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Figure 3. Rod bundle mesh. 120 elements, 407 nodes 
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Figure 4 
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Figure 5 

Improved near wall predictions of the wall shear stress and velocity profiles were obtained 
when a modified distribution of length scale was used. This varies with both radial distance 
from the rod wall and also with its angular location (Figure 1). The form adopted6 can be 
represented by, 

))](l-$) 0*25<:<0.4833 r 

+ i 0.43152+0*10083 sin (($-04833)($/O-S16667)) &, 0*4833<:< 1 (20) c r 

The variation in shear stress predicted using this length scale, (Figure S), was significantly 
better than those obtained previously. Again the velocities tended to be too large approxi- 
mately midway between the rods and the centreline. 

The wall shear stress distribution obtained when the two equation model and modified 
length scale was considerably better than the one equation model (Figures 5 ,  6). The results 
are also compared with previous numerical and experimental values (Figure 7); those 
obtained using the modified length scale are again acceptable. Some velocity contour plots 
are presented in Figures 8-10. A comparison of the length scale values is shown in Figure 11 
on the 0" and 30" radial extremities. The two equation model follows the same basic shape as 
those devised by Buleev3 although they are slightly smaller on the centreline. 

The Nusselt number is evaluated in terms of an average temperature defined by, 
I "  
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Figure 6 

resulting in the Nusselt number, 

Although a wall function could have been used for the near wall distribution of tempera- 
ture it was found, in common with other numerical ana ly~es ,~~ '  that an accurate temperature 
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Figure 8. uiii contours. Re = 270 000. One equa- 
tion model length scales equation (12) 

Figure 9. u/ii contours. Re = 270 000. One equa- 
tion model length scale from equation (20) * 

distribution could be obtained using conventional elements to discretise up to  the rod 
surface. The mesh used is shown in Figure 12. 

For simplicity it is assumed that g does not vary with position within the rod cross-section 
so that g/g = 1.0. In addition it is assumed that kJk'  remains constant at 1.5. In the first 
instance, eddy viscosity, pT/crT, is calculated using Buleev's f ~ r m u l a . ~  The resulting plot of 
the temperature distribution is shown in Figure 13. When the one equation model is used to 
evaluate the turbulent viscosity thus the resulting profile is as shown in Figure 14. 

CONCLUSIONS 

In general the results obtained for the velocity distribution are better than the corresponding 
one equation model values. Both sets, however, compare quite favourably with other 
numerical and experimental data. The wall shear stress, in particular, is quite acceptable. The 
temperature fields for the coupled fluidisolid system could be obtained quite readily without 
resorting to the use of associated wall functions which proved to be necessary when solving 
for the velocity distribution. 
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Figure 10. u/ii contours. Re = 270 000. Two equation model length scale from equation (12) 
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Figure 12. Fine extended mesh, 28 elements in OWZ 

Figure 13. Dimensionless temperature contours with coarse mesh 

Figure 14. Dimensionless temperature contours, turbulent Prandtl number = 1.4, kJk’  = 1.5 
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